
J
H
E
P
0
9
(
2
0
0
7
)
1
1
1

Published by Institute of Physics Publishing for SISSA

Received: July 18, 2007

Accepted: September 15, 2007

Published: September 25, 2007

Holographic heavy-light mesons from non-Abelian DBI

Johanna Erdmenger

Max Planck-Institut für Physik (Werner Heisenberg-Institut),
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Abstract: In the context of gauge/gravity duals with flavor, we examine heavy-light

mesons which involve a heavy and a light quark. For this purpose we embed two D7 brane

probes at different positions into the gravity background. We establish the non-Abelian

Dirac-Born-Infeld (DBI) action for these probes, in which the U(2) matrix describing the

embedding is diagonal. The fluctuations of the brane probes correspond to the mesons.

In particular, the off-diagonal elements of the U(2) fluctuation matrix correspond to the

heavy-light mesons, while the diagonal elements correspond to the light-light and heavy-

heavy mesons, respectively. The heavy-light mesons scale differently with the ’t Hooft

coupling than the mesons involving quarks of equal mass. The model describes both scalar

and vector mesons. For different dilaton-deformed gravity backgrounds, we also calculate

the Wilson loop energy, and compare with the meson masses.

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep092007111/jhep092007111.pdf

mailto:jke@mppmu.mpg.de
mailto:gouroku@dontaku.fit.ac.jp
mailto:kirsch@phys.ethz.ch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
7
)
1
1
1

Contents

1. Introduction 1

2. Embedding of D7 branes 3

2.1 Non-Abelian Dirac-Born-Infeld action 3

2.2 Diagonal embedding ansatz in non-Abelian DBI action 4

2.3 Specific gravity background 5

3. D7-brane fluctuations 6

4. Mass spectra of heavy-light mesons 10

4.1 Supersymmetric case 10

4.1.1 Scalar fluctuations 10

4.1.2 Vector fluctuations 13

4.2 Non-supersymmetric case and chiral symmetry breaking 14

5. Wilson loop for heavy-light mesons 17

6. Conclusion 19

1. Introduction

Recently, based on the gauge/gravity correspondence [1], many non-perturbative properties

of Yang-Mills theories with quarks have been uncovered in terms of superstring theory [2]–

[11]. Flavor quarks in the fundamental representation of the gauge group are introduced

by embedding one or several probe branes into an appropriate bulk gravity background,

in order to describe large N gauge theories similar to QCD. Many successful results have

been obtained for the properties of quarks and their bound states: Mesons spectra have

been studied by many authors, including [3]–[20]. The mass spectra of fermionic operators

with fundamental fields (“mesinos”) have been discussed in [21, 22].

Up to now, most of these investigations have been devoted to the case that the D7

branes are embedded at the same place, such that the flavor group forms U(Nf ) for Nf

D7 branes. Effects of the non-abelian nature of U(Nf ) for Nf > 1 in relation to bulk

instantons have been studied in [23] and in [24]–[26]. Examples of D7 branes embedded at

different positions occur in studies of meson decay via string breaking [27]–[29].

Here we propose a holographic model for heavy-light mesons based on a non-abelian

Dirac-Born-Infeld (DBI) action. In this model, two D7 brane probes are embedded at

different positions, such that they provide different quark mass states depending on the
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flavor. It is possible to choose any mass difference by separating the branes by an appropri-

ate distance. In terms of this model, we study meson states with heavy and light quarks,

such as mesons with charm or bottom degrees of freedom for instance. Heavy-light mesons

with large spin have been studied in [30, 31].

In [32], an effective model for heavy-light mesons such as the B meson has been pro-

posed which is based on the Polyakov action. This model gives a qualitative description

of the B and excited B∗ states. It also gives rise to a dependence of the heavy-light meson

mass on the ’t Hooft coupling (λ) of the form MHL/mH = 1 + const/
√

λ + O(λ−1), with

MHL the heavy-light meson mass and mH the heavy quark mass (The light quark mass

mL has been set to zero here.). This differs from the ’t Hooft coupling dependence of the

light-light or heavy-heavy mesons [3], for which M ∝ m/
√

λ. However the result of [32]

ensures that the heavy-light meson mass equals the heavy quark mass in the large λ limit,

MHL = mH , as expected from observation and dimensional analysis.

Here we present an alternative approach to the same heavy-light meson mass in terms

of a non-Abelian Dirac-Born-Infeld (DBI) action for two D7 branes at different positions.

We use the non-Abelian DBI action for curved 10d backgrounds which has been proposed

by Myers [33]. In this action, the world-volume fields are assigned to U(Nf ) matrix-

valued functions for Nf D7 branes. We choose Nf = 2. The embedding configuration

of the two D7 branes is determined by the diagonal components of the scalar fields. The

corresponding equation of motion is solved by the profile functions of two separated branes,

one of which corresponds to the heavy and one to the light quark. The quark masses are

given by the boundary values of the two embedded branes. The fluctuations of the diagonal

elements of the 2×2 flavor matrices correspond to the light-light and heavy-heavy mesons,

respectively. On the other hand, the off-diagonal components of the fluctuations of the

fields on the branes are identified with the heavy-light mesons. We calculate the spectrum

of these heavy-light mesons.

For the λ dependence of the heavy-light meson mass, we find that it is similar to the

one observed using the Polyakov action approach in [32]. A finite contribution to the mass

remains in the limit of λ → ∞. This contribution corresponds to the minimum energy of

a classical string connecting two separated D7 branes, and thus is equivalent to the mass

obtained from the Polyakov action.

This λ dependence persists if we consider the D3 + D(−1) gravity background of [34].

In the field theory dual to this background, a condensate q ≡ π2〈F 2〉 is switched on.

D7 embeddings and chiral symmetry breaking for a non-supersymmetric version of this

background have been studied in [10]. The λ dependence is very similar to that in the

supersymmetric background.

It is instructive to compare the λ dependence of the meson spectra with the λ depen-

dence of the tension. For a classical string stretched between the two D7 brane probes, the

string tension is independent of λ, in agreement with the heavy-light meson mass result

found in [32] as well as in the present paper. For heavy-light mesons this tension con-

tributes to the meson mass even if the distance L between the quark and anti-quark in

the four-dimensional boundary space is zero, in which case it contributes E = mH − mL

to the Wilson line energy. For the heavy-heavy and light-light mesons, the string tension
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scales as m2
q/
√

λ for small L [3, 10]. At large L, when the dual gauge theory is in the quark

confinement phase, there is a long range linear potential for all the mesons considered. For

the heavy-heavy and light-light mesons this was found in [10].

Our model allows to describe both scalar and vector mesons. In this respect, it goes

beyond the effective model of [32]. For the supersymmetric D3+D(−1) background of [34],

we find that the vector and scalar meson masses differ, due to the different dependence of

the fluctuation equations on the non-trivial dilaton. Note that when adding D7 probes to

the D3+D(−1) background, supersymmetry is broken to N = 1 and the vector and scalar

mesons are not in the same multiplet any more. For very large heavy quark mass, N = 2

supersymmetry is restored, and the vector and scalar meson masses become degenerate

again. This is consistent with the phenomenological fact from heavy-quark theory that

spin effects are suppressed by powers of the inverse heavy quark mass. Of course, here this

is due to N = 2 supersymmetry restoration. We leave an investigation of this mechanism

for non-supersymmetric backgrounds to the future.

Our paper is organized as follows. In section 2, we give the non-Abelian DBI action

and the D7 brane embedding model is proposed. In section 3, the number of D7 branes

is restricted to two (Nf = 2) and the action is expanded by fluctuations to see the meson

spectra, which are shown in the section 4 for the case of HL mesons. In section 5, the

potential between quark and anti-quark is given through Wilson loop. The summary is

given in the final section.

2. Embedding of D7 branes

2.1 Non-Abelian Dirac-Born-Infeld action

We start from the non-Abelian Dirac-Born-Infeld action proposed by Myers in [33]. This

action describes the dynamics of Nf Dp-branes in a background with metric Gmn and is

given by

SNf
= −τp

∫

dp+1ξe−φ STr

(

√

− det(P [Grs + Gra(Q−1 − δ)abGsb] + T−1Frs)
√

detQa
b

)

,

(2.1)

where the matrix Qa
b is defined by

Qa
b = δa

b + iT [Xa,Xc]Gcb (2.2)

where T−1 = 2πα′, and Xa are the coordinates transverse to the stack of branes, which

now take values in a U(Nf ) algebra. The symbol STr denotes the symmetrized trace

STr(A1 . . . An) ≡ 1
n!Tr(A1 . . . An + all permutations) and is needed to avoid the ambiguity

of the ordering of the expansion of all fields in the DBI action [35].

In our convention, r, s = 0, 1, . . . , p and a, b = p + 1, . . . , 9 label the world-volume

directions and the directions transverse to the Dp-branes, respectively; m,n = 0, 1, . . . , 9

are the 10d spacetime indices. P [ars] denotes the pull-back of a 10d tensor amn to the
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world-volume of the branes. A peculiarity of the non-Abelian DBI action is that the pull-

back matrix is given by the covariant derivative

DrX
a = ∂rXa + i[Ar,X

a] , (2.3)

with partial derivatives ∂r ≡ ∂/∂ξr, non-Abelian world-volume gauge field Ar and trans-

verse coordinates Xa. Frs is the corresponding world-volume field strength.

For diagonal brane embeddings the commutator [Xa,Xb] is small, as can be seen as

follows. Set Xa as Xa = X̄a + φa, where φa denotes small quantum fluctuations around a

diagonal embedding matrix X̄a. Then we have

[Xa,Xb] = [X̄a, X̄b] + [X̄a, φb] + [φa, X̄b] + [φa, φb] , (2.4)

where the first term [X̄a, X̄b] vanishes and the remaining terms are small. Next, assuming

also a diagonal metric Gmn and employing the approximation (Q−1 − δ)ab ≈ −iT [Xa,Xb],

we rewrite the pull-back in the action (2.1) as

P [Grs + Gra(Q
−1 − δ)abGsb] ≈ Grs + DrX

aDsX
b
(

Gab − iT [Xc,Xd]GacGbd

)

. (2.5)

Then, the action (2.1) is expanded in powers of [Xa,Xb] up to O
(

X4
)

as

SNf
= τp

∫

dp+1ξe−ΦSTr

{

√

− det(Grs + GabDrXaDsXb + T−1Frs)

×
(

1 − 1

4

(

TGac[X
c,Xb]

)2
) }

. (2.6)

The factor in the second line descends from the expansion of
√

detQa
b. For a flat spacetime

background Gmn = ηmn, the action (2.6) agrees with that found in [35].

2.2 Diagonal embedding ansatz in non-Abelian DBI action

The non-Abelian DBI action will now be used to find the embedding of Nf probe D7

branes in different gravity backgrounds. The embedding profiles correspond to the classical

solutions for the scalar fields in the D7 brane action. In our case, the scalar fields Xa are

U(Nf ) matrix valued functions which makes it difficult to obtain a general form of the

profile functions. In order to simplify the problem, we use the diagonal ansatz

Xa = diag(wa
1 , . . . , wa

Nf
) , (2.7)

thereby setting all off-diagonal components to zero. Here each of the functions wa
i corre-

sponds to one of the Nf D7 branes. — It would be an interesting problem to also include

the off-diagonal components of Xa and to solve the corresponding embedding equations.

For example, for a non-trivial world-volume gauge field Frs the off-diagonal components

provide a BI-on configuration which connects two branes [36]. We postpone the discussion

of such configurations to the future.
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The quark mass for each flavor is given by the asymptotic value of wa
i in the ultraviolet

limit. They are the integration constants and given by hand as parameters of the theory.1

The equations of motion for the wa
i are obtained from the action

SNf
= τ7

∫

d8ξ e−ΦSTr

(

√

− det(Grs + Gab∂rwa
i ∂swb

i )

)

= τ7

∫

d8ξ e−Φ

Nf
∑

i=1

√

− det(Grs + Gab∂rwa
i ∂swb

i ) (2.8)

which is eq. (2.6) for the embedding (2.7) and p = 7. The essential point is here that for

the diagonal ansatz (2.7), we obtain Nf decoupled equations of motion for the wa
i such that

the embeddings of each of the probe branes is independent of the other. In other words, for

diagonal embeddings the non-Abelian DBI action reduces to the sum of Nf abelian DBI

actions.2

If there are additional fluxes in the background, the action (2.8) must be supplemented

by appropriate Wess-Zumino terms.

2.3 Specific gravity background

Let us now find the embedding functions w ≡ wi (i = 1, . . . , Nf ) of the probe branes for

some phenomenologically interesting supergravity backgrounds.

As a specific supergravity background, we consider the following 10d background in

string frame given by a non-trivial dilaton Φ and axion χ [34, 10],

ds2
10 = eΦ/2

(

r2

R2
A2(r)ηµνdxµdxν +

R2

r2
dr2 + R2dΩ2

5

)

. (2.9)

Here two typical solutions are considered. One is the supersymmetric solution

A = 1, eΦ = 1 +
q

r4
, χ = −e−Φ + χ0 , (2.10)

and the other is non-supersymmetric and given by

A(r) =
(

1 − (
r0

r
)8

)1/4
, χ = 0 , eΦ =

(

(r/r0)
4 + 1

(r/r0)4 − 1

)

√
3/2

. (2.11)

The first solution is dual to N = 2 super Yang-Mills theory with gauge condensate q and

is chirally symmetric. Both supersymmetry and chiral symmetry are broken for the second

solution [10].

In order to obtain the induced metric on the D7 world-volume, we rewrite the six-

dimensional part of the metric (2.9) in the form

R2

r2
dr2 + R2dΩ2

5 =
R2

r2

(

dρ2 + ρ2dΩ2
3 + (dX8)2 + (dX9)2

)

, (2.12)

1The asymptotic values of (possible) off-diagonal components, say wa
ij , represent the mass-mixing of

different quark flavors i and j. We neglect these here.
2This is only true, if we ignore the fluctuations around the brane embeddings. As we will see in section 3,

the non-Abelian DBI action also describes fluctuations of strings stretched in between two different branes.
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where r2 = ρ2 + (X8)2 + (X9)2. Due to the rotational invariance in the X8 − X9 plane,

we may set X8 = 0 and X9 = w(ρ) without loss of generality. Then the induced metric on

the D7 brane is given by

ds2
8 = eΦ/2

{

r2

R2
A2ηµνdxµdxν+

R2

r2

(

(1 + (∂ρw)2)dρ2 + ρ2dΩ2
3

)

}

. (2.13)

In static gauge the action for the D7 probe is given by

SD7 = SDBI + SWZ = −τ7

∫

d8ξ
√

ǫ3ρ
3
(

A4eΦ
√

1 + (w′)2 − C8

)

, (2.14)

where C8 = q/r4 = eΦ − 1 denotes the Wess-Zumino term coming from A8, the Hodge

dual of the axion [10]. The Wess-Zumino term is only required for the supersymmetric

background (2.10). The equation of motion for the embedding function w(ρ) is

− w

ρ + w w′
√

1 + (w′)2(Φ + 4 log A)′

+
1

√

1 + (w′)2

[

w′
(

3

ρ
+ (Φ + 4 log A)′

)

+
w′′

1 + (w′)2

]

= 0 (2.15)

for the non-supersymmetric case (2.11), and

w

ρ + w w′Φ
′
[

1 −
√

1 + (w′)2
]

+
1

√

1 + (w′)2

[

w′
(

3

ρ
+ Φ′

)

+
w′′

1 + (w′)2

]

= 0 (2.16)

for the supersymmetric case (2.10). Here the prime denotes the derivative with respect to

ρ.

In deriving these equations, we have to take into account that r =
√

ρ2 + w(ρ)2. We

therefore have to extract the variation of w also from the functions of A(r) and Φ(r). For

example, the variation of A(r) with respect to w is obtained as

δA(r) =
∂r2

∂w
∂r2A(r)δw + · · · =

w

ρ + w∂ρw
∂ρAδw + · · ·

Here, the expression after the second equality sign shows the change of variable from r to

ρ in the derivative. The prefactor of the first term of (2.15) and (2.16) originates from this

variable changing procedure.

Solving the above equation for w, we find the profile functions of the D7 brane em-

bedded at the separated places and then we find simultaneously the quark properties, the

quark mass mq and the chiral condensate
〈

Ψ̄Ψ
〉

, where Ψ denotes the quark field. The

details of the solutions are shown in [10].

3. D7-brane fluctuations

In this section we derive the actions of the scalar and vector D7 brane fluctuations dual

to heavy-heavy, light-light and heavy-light mesons. These actions will be used in the next

section to find the fluctuation spectrum in the backgrounds of the type (2.9).
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For this, we return to the brane action (2.6). At this stage, we restrict to the case of

Nf = 2 flavors or two D7 branes such that the scalar and vector fields in the non-Abelian

DBI action are represented by 2 × 2-matrices. For the classical embedding, we choose the

diagonal configuration given by

X̄8 = 0 , X̄9 =

(

w1 0

0 w2

)

. (3.1)

In terms of the Pauli matrices

τ0 =
1

2

(

1 0

0 1

)

, τ1 =
1

2

(

0 1

1 0

)

, τ2 =
1

2

(

0 −i

i 0

)

, τ3 =
1

2

(

1 0

0 −1

)

, (3.2)

X̄9 can be rewritten as

X̄9 = wτ0 + vτ3 , w1 = (w + v)/2 , w2 = (w − v)/2 , (3.3)

where v = w1−w2. The asymptotic boundary values of w1 and w2 correspond to the heavy

and light quark masses, respectively. When v = 0, the two branes are at the same place,

w1 = w2 = w, corresponding to a U(2) flavor symmetry. For v 6= 0 this flavor symmetry is

explicitly broken.

The scalar and gauge field fluctuations are taken to be of the form (a = 8, 9)

X9 = X̄9 + φ9 , X8 = φ8 , (3.4)

φa = φa
0τ

0 + φa
i τ

i , Ar = Ar
0τ

0 + Ar
i τ

i , (3.5)

and can be written as

φa =

(

φa
+ φa

12

φa
21 φa

−

)

, (3.6)

similarly Ar. The diagonal elements φa
± = φa

0 ± φa
3 describe fluctuations of each brane and

are dual to the heavy-heavy and light-light mesons. On the other hand, the off-diagonal

elements φa
12 = φa

1 − iφa
2 and φa

21 = φa
1 + iφa

2 correspond to fluctuations of strings stretched

between the two branes and are dual to the heavy-light mesons. The mass of this last

type of fluctuations will depend on v. — A similar structure emerges also for gauge field

fluctuations Ar, as discussed below.

These meson mass spectra are obtained by solving the linearized equation of motions

for the field fluctuations. Using the expansions (3.4) and assuming small fluctuations φa

and Ar, the action (2.6) is rewritten as

SNf =2 = τ7

∫

d8ξ STr

{

e−Φ
√

− det(ars)

(

1 + G88G99
1

8

(

(φ8
1)

2 + (φ8
2)

2
)

v2

) }

, (3.7)

where

ars ≡ Grs + GabDrX
aDsX

b + T−1Frs . (3.8)

and φ8
1 and φ8

2 as defined in (3.5). The other components of φ8 and φ9 do not appear

explicitly, but contribute to ars in (3.7).
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When evaluating (3.7), we have to take into account that the radial coordinate r,

which occurs in Grs, Gab and Φ on the brane, is a matrix-valued function. Including the

fluctuations, r is of the form

r2 = ρ2 + (X8)2 + (X9)2 = ρ2 + (wτ0 + vτ3 + φ9)2 + (φ8)2 (3.9)

and, for instance, Grs denotes the matrix

Grs Ã

(

Grs|r=r11
Grs|r=r12

Grs|r=r21
Grs|r=r22

)

, (3.10)

where rij (i, j = 1, 2) are the matrix elements of r.

It is convenient to write ars in (3.7) as

ars = ārs + δars , (3.11)

where

ārs = Grs + G99∂rX̄
9∂sX̄

9 . (3.12)

The explicit fluctuation dependent part δars is expanded in terms of the power series of

the fluctuations as

δars = a(1)
rs + a(2)

rs + . . . , (3.13)

where

a(1)
rs = G99

(

∂rX̄
9∂sφ

9 + ∂rφ
9∂sX̄

9 − i[Ar, X̄
9]∂sX̄

9 − i∂rX̄
9[As, X̄

9]
)

+ T−1Frs , (3.14)

a(2)
rs = G99

(

−i[Ar, X̄
9]∂sφ

9 − i∂rφ
9[As, X̄

9] + ∂rφ
9∂sφ

9 − [Ar, X̄
9][As, X̄

9]

−i[Ar, φ
9]∂sX̄

9 − i∂rX̄
9[As, φ

9]
)

+ G88∂rφ
8∂sφ

8 . (3.15)

Moreover, since the metric depends on r given by (3.9), ārs in (3.12) still includes (implic-

itly) the matrix-valued quantum fluctuations φ8 and φ9.

Then the action (2.6) is expanded up to quadratic order in the fluctuations,

SNf =2 = τ7

∫

d8ξSTr

{

e−Φ
√

− det(ārs)

(

1 +
1

2
trrs(ā

−1a(1)) +
1

8

(

trrs(ā
−1a(1))

)2
(3.16)

−1

4
trrs

(

(ā−1a(1))2
)

+
1

2
trrs(ā

−1a(2))−1

8
G88G99

(

(φ8
1)

2+(φ8
2)

2
)

v2+· · ·
)}

.

Lagrangian for scalar fluctuations. From (3.15), we see that the fluctuations φ9 and

Ar are mixing, while φ8 does not mix with any other field. For simplicity, we consider only

the φ8 fluctuations. When evaluating the symmetrized trace in (3.17) it has to be kept in

mind that the diagonal flavor matrix elements of the embedding have to be evaluated at

w1(ρ) and w2(ρ), respectively. To quadratic order the Lagrangian for the φ8 fluctuations

reads

L(2)
φ8 =

1

4
∂r2F̄ |w1

(

(φ8
+)2 + (φ8

1)
2 + (φ8

2)
2
)

+
1

4
∂r2F̄ |w2

(

(φ8
−)2 + (φ8

1)
2 + (φ8

2)
2
)

+
1

8
(F̄ G88ā

rs)|w1
∂rφ

8
+∂sφ

8
+ +

1

8
(F̄ G88ā

rs)|w2
∂rφ

8
−∂sφ

8
−

+
1

8

(

(F̄ G88ā
rs)|w1

+ (F̄ G88ā
rs)|w2

) (

∂rφ
8
1∂sφ

8
1 + ∂rφ

8
2∂sφ

8
2

)

− v2

8

(

(F̄ G88G99)|w1
+ (F̄ G88G99)|w2

) (

(φ8
1)

2 + (φ8
2)

2
)

, (3.17)
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where

F̄ = e−Φ
√

− det ārs . (3.18)

In the above equation (3.17), the notation K(r)|wi
means that r in any function K(r)

is replaced by r̄i =
√

ρ2 + w2
i , K(r)|wi

= K(
√

ρ2 + w2
i ). Moreover, the first two terms

of (3.17) are derived from the matrix-valued coordinate r, which includes the fluctuations

φ8 and φ9. The first two terms of (3.17) are essential for finding the correct spectrum. In

particular, in the non-supersymmetric case these terms are crucial for finding the Nambu-

Goldstone bosons of chiral symmetry breaking.

From the Lagrangian (3.17) we obtain the standard equations of motion for the heavy-

heavy and light-light modes φ8
± as well as a new equation for the heavy-light fluctuations.

Note that the mass spectra of φ8
1,2 depend on both profile functions w1,2(ρ). — For the

details of the meson spectrum in the single brane case see [37].

Lagrangian for vector fluctuations. For the vector meson, we find a similar separation

of the modes as for the scalars. However there is a mixing of the A1,2
r and φ9 modes, as we

now discuss. For the case of constant wi, we can see that this mixing can be removed by

the gauge transformation of A1,2
r . By taking

A1
r = Ã1

r +
1

v
∂rφ

9
2 ,

A2
r = Ã2

r −
1

v
∂rφ

9
1 , (3.19)

the mixing part in (3.15) is written as

a
(2)

Ã,φ9
= G99

(

−i[Ar, X̄
9]∂sφ

9 − i∂rφ
9[As, X̄

9] + ∂rφ
9∂sφ

9 − 2[Ar, X̄
9][As, X̄

9]
)

.

Again, when explicitly writing out the flavor matrix, we have a diagonal form

a
(2)

Ã,φ9
= G99

{(

∂rφ
9
+∂sφ

9
+

∂rφ
9
−∂sφ

9
−

)

+

(

1 0

0 1

)

v2

4

(

Ã1
rÃ

1
s + Ã2

rÃ
2
s

)

}

, (3.20)

where the top left entry is evaluated at w1 and the bottom right at w2. From (3.20) we see

that the kinetic terms of φ9
1,2 are eliminated by changing A1,2

r to the new variables Ã1,2
r . On

the other hand, due to gauge invariance, the kinetic term of Ar does not give rise to any

new kinetic terms for φ9
1,2. Instead, new mass terms are generated for A1,2

r as shown above.

The two scalar components φ9
1,2 are gauged away to produce the longitudinal component

of the vector A1,2
r .

This is the well-known Higgs mechanism, with X9 the Higgs scalar and the Aa
r . the

SU(2) gauge fields. X8 is not involved in this Higgs mechanism of the gauge symmetry

breaking. However X8 is associated with the Nambu-Goldstone mode of the geometrical

U(1)A chiral symmetry breaking. These two symmetry breaking mechanisms are not related

to each other.

For constant w1,2, the vector meson part of (3.17) is given by

L(2)

Ã
= STr

{

e−Φ
√

− det ārs

(

−1

4
trrs

(

(ā−1a
(1)

Ã
)2

)

+
1

2
trrs(ā

−1a
(2)

Ã
)

)}

, (3.21)
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where in flavor space

a
(1)

Ã
= Frs(Ã)

(

1 0

0 1

)

, (3.22)

a
(2)

Ã
= G99

(

1 0

0 1

)

v2

4

(

Ã1
rÃ

1
s + Ã2

rÃ
2
s

)

. (3.23)

Then we obtain

L(2)

Ã
=

1

4
(F̄ ārpāsq)|w1

F̃+
rsF̃

+
pq +

1

4
(F̄ ārpāsq)|w2

F̃−
rsF̃

−
pq

+
1

4

(

(F̄ ārpāsq)|w1
+ (F̄ ārpāsq)|w2

)

(

F̃ 1
rsF̃

1
pq + F̃ 2

rsF̃
2
pq

)

+
v2

8

(

(F̄ G99ā
rs)|w1

+ (F̄ G99ā
rs)|w2

)

(

Ã1
rÃ

1
s + Ã2

rÃ
2
s

)

, (3.24)

where

F̃±
rs = F̃ 0

rs ± F̃ 3
rs . (3.25)

Again the dependence on the position of the two distinct branes, characterized by the two

profile functions wi(ρ), i = 1, 2, is stated explicitly as in (3.17) above.

We give a brief summary of this section. (i) For heavy-heavy or light-light mesons,

the modes of φa
0,3 and Ar

0,3 recombine into φa
± and Ar

±, and their spectra coincide with the

one obtained from one individual probe brane. (ii) For heavy-light mesons, only φ8
1,2 and

Ar
1,2 remain as independent fluctuation variables. φ9

1,2 are gauged away and Ar
1,2 become

massive as a result of the Higgs mechanism. (iii) The mesons corresponding to φ8
1,2 have a

mass which depends on both brane embeddings w1 and w2. These modes are not affected

by the above Higgs mechanism.

4. Mass spectra of heavy-light mesons

In this section we examine the mass spectra of heavy-light (HL) mesons in the two back-

ground solutions.

4.1 Supersymmetric case

First, we consider the supersymmetric background solution given by (2.10).

4.1.1 Scalar fluctuations

For the supersymmetric solution (2.10), the equation of motion for the fluctuations φ8
1,2

dual to HL mesons is obtained from (3.17). We find
(

∂2
ρ +

3

ρ
∂ρ−

l(l + 2)

ρ2
+

M1 + M2

eΦ(r1) + eΦ(r2)

)

φ = 0 , (4.1)

where

Mi = eΦ(ri)

(

∂ρΦ(ri)∂ρ +
M2−v2eΦ(ri)

r4
i

R4

)

, (4.2)
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r2
i = ρ2 + w2

i (i = 1, 2) and φ8
1,2 are denoted by φ. Here −l(l + 2) is the eigenvalue of the

Laplace operator on S3.

In order to study the qualitative behavior of the spectrum, we first consider the non-

confining case q = 0. In this case, the dilaton is trivial, Φ = 0, and eq. (4.1) simplifies

to
(

∂2
ρ +

3

ρ
∂ρ −

l(l + 2)

ρ2
+

M2 − v2

2

(

(

R2

ρ2 + w2
1

)2

+

(

R2

ρ2 + w2
2

)2
))

φ = 0 . (4.3)

The mass of the fluctuations M is interpreted as the heavy-light meson mass in the dual

gauge theory. Since w1 and w2 are mixed in a complicated way, we must solve this equation

numerically.

Before proceeding to the numerical solution, we consider two special cases in which

the spectrum can be determined analytically. For w1 = w2 = w, we get v = 0 and the

equation reduces to the one given by Kruczenski et al [3] which can be solved analytically.

In this case, the meson masses can be expressed in terms of the quark mass m = w/(2πα′)

and the ’t Hooft coupling λ = R4/4πα′2 by

M2 = 4π
m2

λ
(n + l + 1)(n + l + 2) , (4.4)

where n denotes the node number of the eigen functions for l = 0 and and l represents the

angular momentum of S3 in the world-volume of the D7 brane. This spectrum represents

therefore the one for the heavy-heavy and light-light mesons.

The other regime in which (4.3) can be solved analytically corresponds to a heavy-light

meson with a very heavy quark, w2 ≫ w1. In this case the term in (4.3) involving w2 is

much smaller than the one involving w1 and may be neglected. Eq. (4.3) approaches then

the equation for a meson with a single flavor [3] in which we replace

M2 → M̃2 ≡ M2 − v2

2
, w → w1 . (4.5)

Substituting this into (4.4) for n = l = 0, we find

M2
HL =

16w2
1

R4
+

v2

(2πα′)2
= 16π

m2
L

λ
+ (mH − mL)2 , (4.6)

where we reintroduced the string tension T = 1/(2πα′) (which was set to one above) and

defined the quark masses mL,H = w1,2/(2πα′) as the distances w1,2 in units of T .

Eq. (4.6) implies that the mass of HL mesons has two different contributions. The first

term proportional to
m2

L√
λ

has the same dependence on the ’t Hooft coupling as in the single

flavor case [3]. The second term is dominant at large ’t Hooft coupling (λ → ∞), where

the mass of the HL mesons is approximated by the second term,

MHL ≈ v

2πα′ = mH − mL . (4.7)

In this strong-coupling regime, the heavy-light meson mass depends solely on the difference

of the two quark masses. This is consistent with the result obtained in [32], and provides

a lower bound for the HL meson mass.
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Figure 1: Numerical plots of the heavy-light meson mass for different values of the ’t Hooft coupling

λ. Here we set T = 1 and mL = w1 = 1. The dashed curve shows the analytical solution (4.6) for

λ = 34.

Let us now solve eq. (4.3) numerically and compare the results with the analytical

solutions. Figure 1 shows numerical plots of the heavy-light meson mass M2
HL (in units

of λ) versus the heavy quark mass mH for various values of the ’t Hooft coupling. As an

example, consider the asymptotics of the graph for λ = 34 (figure 1-left). For small quark

mass differences, mH ≈ mL (mL = 1 in the plot), the graph behaves very similarly to the

heavy-heavy graph (4.4) with m = mH . For large quark mass differences, mH ≫ mL, the

numerical graph asymptotes to the analytical curve given by eq. (4.6) (dashed curve). We

observe that the approximation (4.6) works particularly well for large masses of the heavy

quark.

In figure 1-right we compare the heavy-light meson mass with the heavy-heavy meson

mass. The essential difference comes again from the ’t Hooft coupling dependence. For

small ’t Hooft coupling the HL curve lies below the HH curve. However, there exists a

critical value of the ’t Hooft coupling for which the HL mesons are heavier than the HH

mesons. In other words, at strong coupling (at large λ) and for fixed quark masses mH,L,

the HL meson mass is much larger than the corresponding HH meson mass. This is of

course unphysical from the point of view of QCD. However, this seems to be a general

feature of gravity dual heavy-light models, since the ’t Hooft coupling dependence found

here coincides exactly with the one found in [32].

Next, as in [34], we turn on a gauge condensate q ∼ 〈F 2
µν〉 such that the dual super-

symmetric gauge theory becomes confining, but remains chirally symmetric. In general,

the gauge condensate depends on the ’t Hooft coupling and we choose q = q̄λα′4 as in [34].

For the dilaton given by (2.10), figure 2 shows the HL and HH mesons as a function of

the heavy quark mass for fixed value of the light quark mass mL = 1. We observe that

the presence of q increases the HL meson masses. This is due to increase of the dilaton in

the term v2eΦ in the presence of q. The dilaton as given by (2.10) is responsible for quark

confinement and an increase in binding energy. Note that the term v2eΦ is independent

of λ. On the other hand, for the HH mesons the q dependence via eΦ disappears at large

quark mass mH . This is seen from their equation of motion which is obtained from eq. (4.1)
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Figure 2: Meson masses for non-zero q. The red and blue curves show MHL, MHH for λ = 34,

q = 1 (left) and q = 5 (right). The grey curves show the corresponding meson masses for q = 0.

The presence of q increases the HL meson masses. The lambda dependence remains unchanged.

by replacing the last term by

M1 + M2

eΦ(r1) + eΦ(r2)
→ ∂ρΦ(r)∂ρ +

M2

r4
R4,

where

∂ρΦ(r) =
4qρ

(w2 + ρ2)(q + (w2 + ρ2)2)
. (4.8)

This shows the q-dependence explicitly. We see that this dependence is small for large w,

i.e. for large quark mass, for all values of ρ. Thus in the large w limit, the HH meson

masses take their N = 2 supersymmetric value of the q = 0 case. This implies an increase

in the difference between the HL spectrum and the HH spectrum for sufficiently large λ.

This is due to the term v2eΦ which contributes only to the HL mass.

4.1.2 Vector fluctuations

From (3.24), we obtain the equation of motion for the vector fields for the confining su-

persymmetric background of [34]. Here we consider the four dimensional vector Ã1,2
µ , for

the case that the components Ãρ = Ãi = 0 are zero. By imposing the gauge condition

∂µÃµ = 0, the vector fluctuation equation of motion is

(

∂2
ρ +

3

ρ
∂ρ −

l(l + 2)

ρ2
+

MA
1 + MA

2

2

)

Ãµ = 0 , (4.9)

where

MA
i =

M2 − v2eΦ(ri)

r4
i

R4 , (4.10)

i = 1, 2 and Ã1,2
µ are denoted by Ãµ. Note the different dilaton dependence as compared

to the scalar equation (4.3). The different dilaton dependence of vector and scalar mesons

is consistent with the fact that when adding D7 probes to the D3 + D(−1) background,

supersymmetry is broken to N = 1.
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Figure 3: Vector and scalar masses as function of the heavy quark mass for R = 2, q = 10.

The vector masses are larger than the scalar masses. For large heavy quark mass, they become

degenerate again. Red: scalar heavy-heavy meson. Red dashed: vector heavy-heavy meson. Blue:

scalar heavy-light meson. Blue dashed: vector heavy-light meson.

We find that the vector masses are slightly larger than the scalar masses. For large

heavy quark masses, the vector spectrum degenerates with the scalar spectrum again, since

the dilaton dependence becomes negligible. For vanishing dilaton Φ = 0, (4.9) reduces to

the same form as the scalar (4.3). The degeneracy of vector and scalar masses in this

limit is expected since for very large heavy quark mass, N = 2 supersymmetry is restored.

This is consistent with the phenomenological fact from heavy-quark theory that spin effects

are suppressed by powers of the inverse heavy quark mass. Of course, here this is due to

N = 2 supersymmetry restoration. It would be interesting to compare the scalar and vector

sectors for a non-supersymmetric gravity background. However, since the calculations are

much more involved, we leave this for future work. In the next section we consider the

non-supersymmetric case for just the scalar sector.

4.2 Non-supersymmetric case and chiral symmetry breaking

The above analysis is performed for a supersymmetric background, so w is constant

and there is no chiral condensate. On the other hand, in a background dual to a non-

supersymmetric theory with chiral symmetry breaking, the profile functions w1,2 are not

constants but vary with ρ. As a result, the mass spectrum is modified due to the presence

of the chiral condensate and the related background configuration.

We now consider the non-supersymmetric background (2.11). The corresponding mass

spectrum of single-flavor mesons has previously been studied in [37]. In the following we

compute the HL spectrum dual to the scalar fluctuations φ8
1,2 and compare it with the

corresponding HH spectrum. We show that at strong ’t Hooft coupling the heavy-light

meson masses lie below the corresponding heavy-heavy meson masses in agreement with

phenomenological expectations.
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Figure 4: Embedding solutions w(ρ) in the nonsupersymmetric background (2.11).

The linearized equation of motion of the φ = φ8
1,2 fluctuations is given by

(

∂2
ρ +

3

ρ
∂ρ +

N{1} + N{2}
F{1} + F{2}

)

φ = 0 , (4.11)

with

N{i} =
{

F (∂ρ(log F )∂ρ + K) − v2G
}

{i} , (4.12)

K = (1 + (∂ρw)2)

(

m2R4

r4A4
− l(l + 2)

ρ2
− 2Kr

)

, Kr = ∂r2 log(eΦA4) , (4.13)

F =
eΦA4

√

1 + (∂ρw)2
, G = e2ΦA4

√

1 + (∂ρw)2
R4

r4
, (4.14)

and the dilaton Φ(r) and warp factor A(r) as in (2.11). The index {i} (i = 1, 2) means that

we have to substitute either of the profiles w1,2(ρ). In the following we consider fluctuations

with quantum numbers n = l = 0 for the sake of simplicity.

For the above non-susy configuration, the parameter r0 plays a role similar to the

infra-red cut-off ΛQCD in QCD. Recall that the background has a singularity at r = r0 and

is well-defined only for r > r0 corresponding to energies above ΛQCD. Quite generally, we

expect the parameter r0 to depend on the (asymptotic) AdS radius R. For the computation

of the meson spectrum, we will make the simple choice

r0 = R . (4.15)

The dependence of the parameter r0 on R is motivated by the fact that r0 is also related

to the gauge field condensate 〈F 2
µν〉, as can be seen by expanding the dilaton as

eφ = 1 + q/r4 + · · · , (4.16)

where q =
√

6r4
0. Now, q is related to the gauge field condensate 〈F 2

µν〉 by q = λ〈F 2
µν〉, see

for instance [34], and thus r0 ∝ R. We should notice here that λ is running in the present

case, since g2
YM = eΦ(r) depends on r.
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zero light quark mass and R = 1, 2πα′ = 1.

Let us now find the numerical fluctuation spectrum. As in the single-flavor case,

one first computes the D7 brane profiles w1,2(ρ) by numerically solving the embedding

equation (2.15). The asymptotic values of w1,2(ρ) are fixed by the quark masses mL,H .

The values of the quark condensate c = 〈ψ̄ψ〉 are obtained by requiring the regularity of

the solutions for all values of ρ. For the background (2.11), the embedding solutions w(ρ)

have been found in [10] and are shown in figure 4 for various quark masses m [10]. As

in [5], the solutions are repelled from the singularity at r0 = R = 1. Again, fluctuations of

strings stretching in between two different branes (such as the blue HL string) are dual to

HL mesons. Strings starting and ending on the same brane (e.g. the red HH or the green

LL string) correspond to HH or LL mesons.

The embedding solutions must then be substituted into the equation of motion (4.11).

Solving this equation for φ, we obtain a numerical spectrum M(mH ,mL, R) of HL mesons.

Figure 5 shows the resulting HL spectrum in dependence of the heavy quark mass mH .

The light quark mass is set to zero, mL = 0, and R is kept fixed here (R = 1). For

mH = 0, we recover the (massless) Nambu-Goldstone boson in the spectrum which is

expected from spontaneous breaking of the U(1) chiral symmetry [5, 10]. Both the HL and

the HH spectrum satisfy the Gell-Mann-Oakes-Renner relation M2 ∝ mH for small mH .

We also find that the HL meson masses lie below the HH spectrum, at least for an

intermediate value of the ’t Hooft coupling of 1 . λ, as can be seen from figure 6. As in the

supersymmetric case, the heavy-light mesons scale differently with the ’t Hooft coupling

than the heavy-heavy and light-light ones. There exists a critical value for the ’t Hooft

coupling (depending on mH) above which the HL mesons are heavier than the HH mesons,

which is unphysical from the point of view of QCD. Below the critical value the HH meson

mass is larger than the HL meson mass. Accepting intermediate values of the ’t Hooft

coupling in the range of 1 ≤ λ . 50, it is possible to find an appropriate parameter region

where realistic mass spectra are obtained. These spectra will be explored elsewhere.

Moreover, we find numerically that for r0 ∼ R ∼ λ1/4 large, the HL spectrum M2(R)
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Figure 6: ’t Hooft coupling λ dependence (for 2πα′ = 1, i.e. λ = πR4) of the heavy-light and

heavy-heavy mesons for the non-supersymmetric background (2.11), for mH = 1 and mH = 7, with

mL=0 in both cases. For large λ, the heavy-heavy quark mass is suppressed.

approaches 1
2πα′ (w2 − w1)|ρ=0, ie. is proportional to the distance of the two brane probes

at ρ = 0 in the far IR. Considering the embedding solutions in figure 4, we find that this

mass is equivalent to the minimum energy of a string stretched between the two branes.

At large ’t Hooft coupling, this string is much shorter than a string stretched in between

the same branes at ρ → ∞. Thus, the O(λ0) contribution in the non-supersymmetric HL

spectrum is much smaller than in the supersymmetric case, where it was proportional to

mH − mL, see eq. (4.6). This implies in particular that in the non-supersymmetric case,

the HL masses also tend to zero for λ → ∞, though more slowly than the HH masses.

5. Wilson loop for heavy-light mesons

Unlike the spectrum of single-flavor mesons, the heavy-light spectrum of the supersym-

metric theory does not vanish in the strong ’t Hooft coupling limit, cf. eq. (4.7). A better

understanding of this behavior can be obtained by studying the forces (or the QCD-like

tension) between the two quarks. For this, it is helpful to consider the quark anti-quark

potential Vqq̄ which can be found by a standard Wilson loop computation similar to that

in the case of single-flavor mesons [38].

The potential Vqq̄ is derived from the expectation value of a parallel Wilson-Polyakov

loop, W = 1
N TrPei

R

A0dt. In the dual gravity theory, it is represented as

〈W 〉 ∼ e−S , (5.1)

with Nambu-Goto action

S = − 1

2πα′

∫

dτdσ
√

−dethab , (5.2)

and induced metric hab = Gµν∂aX
µ∂bX

ν . The string world-sheet is parameterized by σ,

τ , which in static gauge are set as X0 = t = τ and X1 = x1 = σ. In the background (2.9)

the Nambu-Goto Lagrangian becomes

LNG = − 1

2πα′

∫

dσ eΦ/2A(r)

√

r′2 +
( r

R

)4
A2(r) , (5.3)
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rmax2 = 15, respectively. b) Schematic plot of the Wilson loop.

where the prime denotes the derivative with respect to σ. We suppose here that the test

string has a deformed U-shape whose endpoints are on the two D7 branes, as shown in

figure 7b.

Let us first consider the single-flavor case. From the Lagrangian (5.3), we find the

relation

eΦ/2 1
√

(r/R)4A2(r) + (dr/dσ)2

( r

R

)4
A3(r) = h , (5.4)

where h denotes a constant of motion. Here we need to introduce two parameters, rmin

and rmax: rmin is determined by ∂σr|rmin
= 0 and defines the bottom of the deformed

U-shaped string, while rmax is given by the position of the D7 brane, the endpoints of the

string. Replacing h by rmin by using the relation h = eΦ/2
(

r
R

)2
A2(r)|rmin

, we determine

the energy E and the spatial distance L between the quark and anti-quark from

L = 2R2

∫ rmax

rmin

dr IL, E =
1

πα′

∫ rmax

rmin

dr IE , (5.5)

IE =
A(r)eΦ(r)/2

√

1 − eΦ(rmin)r4
minA(rmin)4/

(

eΦ(r)r4A(r)4
)

, (5.6)

IL =
1

r2A(r)
√

eΦ(r)r4A(r)4/
(

eΦ(rmin)r4
minA(rmin)4

)

− 1
, (5.7)

where rmin is restricted as 0 < rmin < rmax.

For the two-flavor case, L and E are given by

L = R2

(
∫ rmax1

rmin

dr IL +

∫ rmax2

rmin

dr IL

)

, (5.8)

E =
1

2πα′

(
∫ rmax1

rmin

dr IE +

∫ rmax2

rmin

dr IE

)

, (5.9)
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where rmax1 and rmax2 denote the positions of the light and heavy quark branes, respec-

tively. They are equivalent to w1 and w2 for the supersymmetric case.

For the supersymmetric background, numerical plots of the energy E(L) are shown in

figure 7a. Curve (A) is a plot of E(L) for heavy-light mesons, while (B) and (C) correspond

to those of the light-light and heavy-heavy mesons, respectively. The curves (B) and (C)

end at (L,E) = (0, 0); the energy is zero for vanishing quark-anti-quark distance, E(0) = 0.

However, as mentioned above, in the heavy-light case the energy remains finite, even for

L = 0.

For L = 0 the string in figure 7b stretched between the D7 branes at rmax1 and rmax2

becomes just a straight line perpendicular to the boundary. Then, in the Nambu-Goto

Lagrangian (5.3), we write dσ = dr/r′ and take r′ ≡ ∂r/∂σ → ∞. In the supersymmetric

case with q = 0 we have A(r) = 1, Φ(r) = 0. Thus, from (5.3) we get

E(L = 0) =
1

2πα′

∫

dr
1

r′

√

r′2 +
( r

R

)4 r′→∞
=

1

2πα′

∫ rmax2

rmax1

dr = mH − mL . (5.10)

This agrees with the meson mass result (4.7).

Note that the ordinary QCD string associated with the flux tube in between the quark

anti-quark pair can be thought of as a projection of the Wilson loop on the boundary of

the (asymptotic) AdS background, see figure 7b. The Wilson line for L = 0 is aligned

along the r-direction and therefore projected to a point on the boundary.

6. Conclusion

We have investigated heavy-light mesons in a holographic set-up by considering the non-

Abelian Dirac-Born-Infeld action for two D7 brane probes embedded at different positions.

The embedding matrix is chosen to be diagonal, whereas the heavy-light mesons arise from

the off-diagonal elements of the fluctuation matrix.

We considered both supersymmetric and non-supersymmetric backgrounds and found

that the dominant contribution to the heavy-light meson mass is O(1) in the ’t Hooft

coupling λ, whereas for the heavy-heavy and light-light mesons it is O(1/
√

λ). Although

this result is unexpected from the point of view of QCD, it is consistent with our Wilson loop

calculation for the heavy-light mesons, as well as with the effective field theory holographic

approach to heavy-light mesons of [32] which uses the Polyakov string action. As discussed

in section 4.2, the O(1) contribution to the HL masses is proportional to the minimal

energy of a string stretching in between two branes. In the non-supersymmetric case, the

minimum energy corresponds to a string located close to the singularity (i.e. at ρ = 0 in

figure 4). At large ’t Hooft coupling this energy is much smaller than mH − mL.

As far as the spectrum of heavy-light mesons is concerned, we found that the HL

spectrum lies below the HH spectrum for intermediate values of the ’t Hooft coupling,

1 ≤ λ . 50. At larger ’t Hooft couplings, the HL meson masses exceed those of the HH

mesons, which would be in conflict with phenomenology. Our results are consistent with

scenarios in which QCD develops an infrared fixed point rather than a singularity, see

e.g. [39] and references therein. In this case, agreement with phenomenology would be
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achieved, if the gauge coupling αs(Q
2) were of order 1 or less at the fixed point (which

corresponds to λ = 4παs(Q
2)Nc ≈ 30).

A new element of our approach as compared to [32] is that it allows to distinguish

scalar from vector mesons. This opens up the possibility to study the heavy quark spin

effect suppression known from QCD. We see the degeneracy of scalar and vector masses

for large heavy quark mass in the N = 1 supersymmetric scenario. It will be interesting

to study the non-supersymmetric case in the future.

We conclude with some remarks on the range of validity of our approach of using the

non-Abelian DBI action for two separated branes. Generally one may expect that the DBI

is valid for branes separated at most by the string length ls. Here, however, our branes

are separated by a larger distance if mH > 1 in our units of setting the string tension to

one. Nevertheless our use of the non-Abelian DBI is justified by the fact that we obtain

agreement with the classical string calculation of [32], as well as with the semiclassical

Wilson loop analysis of a string stretching between the two branes performed in section 5

above in the present paper. Thus the classical analysis at larger length scales dominates over

quantum fluctuations at shorter scales. This is at least in part due to the supersymmetry

of the problem. We also note that restricting to heavy quark masses of order O(∞) in

the string tension will not affect the unusual λ dependence, which intrinsically reflects the

strong coupling behaviour. Physical quark masses correspond to mH ≪ 1. In this regime,

the term mH − mL causing the unusual λ dependence is negligible. Moreover, for the

non-supersymmetric approach it should be noted that the fact that the branes approach

each other in the deep interior will not alter the λ dependence either, since all values of the

coordinate ρ contribute to the action. This is again in agreement with the results of [32].
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